
INTESA M SANPAOLO

ESG risks and ratings: the materiality assessment evolution

June 6th, 2023

Fabio Verachi, FRM

ESG Enterprise Risk Manager

Climate/ESG risk score can be combined with the credit risk appetite and ratings through three different approaches

Methodologies to combine Climate/ ESG score

with Credit Risk Appetite

Integration of Climate/ESG score in internal rating model	□ →	The Climate/ESG score fully integrated in the rating model with dedicated modules and quantitative and qualitative variables capturing climate risk	++	Unique integrated model that avoids double counting of risks/elements Integrated across all credit processes without need of significant process design changes and interventions Need of rating model re-development and internal validation process				
			-	Limited data availability and observed connection to credit performance to match typical internal rating model data quality standards				
			-	Potentially limited impact of climate risk components on overall rating score				
Notch-up/ down of internal rating		The Climate/ESG score impacting the credit rating with a notch-down and notch-up of	++	"Separate" and "visible" C&E impact on credit risk assessment Flexibility for the use of scores in different components of the credit processes				
based on Climate/ESG score		the rating based on the Climate/ESG score value	•	Potential double-counting of risks/model elements between the two scores (only relevant if the final rating feeds all "use test relevant" credit processes)				
Separate Climate/ESG score and credit rating		Two separate scores, i.e. the Climate/ESG score and the credit rating, integrated in the underwriting and monitoring process with rules combining climate and credit risk assessment	+	Flexibility in methodology for the combination of climate score and rating, e.g. through decision-making rules within the credit processes Lack of integrated score with overall risk profile of the counterpart capturing both climate and credit risk assessment and, as a consequence, need for climate-related overlays in the credit UW processes				

Pros and Cons

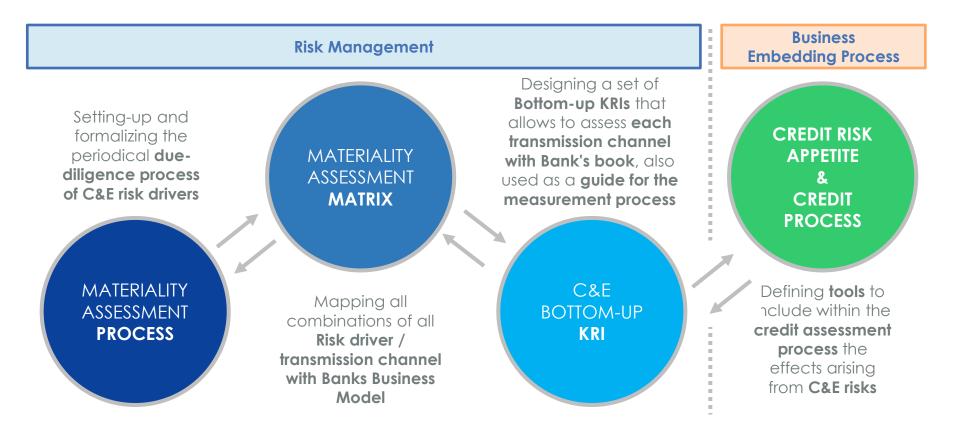
To manage Climate risk, ISP adopted two main pathways

Type of analys	is	Definition	Use case examples (not exhaustive)				
Scorecard	NFC Scorecard (UNEP FI/Moody's heatmaps, TAC, GHG emissions)	 Counterparty level scoring analysis based on Industry sectors and countries of activities Idiosyncratic adjustments for physical and transition risks at counterparty level Mitigation plan of counterparty for physical and transition risks 	Input to credit underwriting and monitoring process , as well as impacting pricing to reflect climate strategy of the bank				
	Scorecard/ haircut table impacting collateral value	Haircut tables informing on property value reduction based on property type and location (informed by physical hazard mapping) Table informed by output of stress test	BlueWhiteYellowOrangeRed				
Scenario analysis	Bottom up stress test	Stress test performed at counterparty level and aggregated into sectorial impact	Stress test to understand impact of				
	Top down stress test	Portfolio level stress test based on forecasted impact of climate change on different counterparty clusters (e.g. industry segment)	Climate risk on portfolio under different climate risk scenarios				
			INTESA 🚾 SANDAOLO				

Climate Risk Scenario Analysis - Different Re-rating simulation engines and integration into the ISP ecosystem

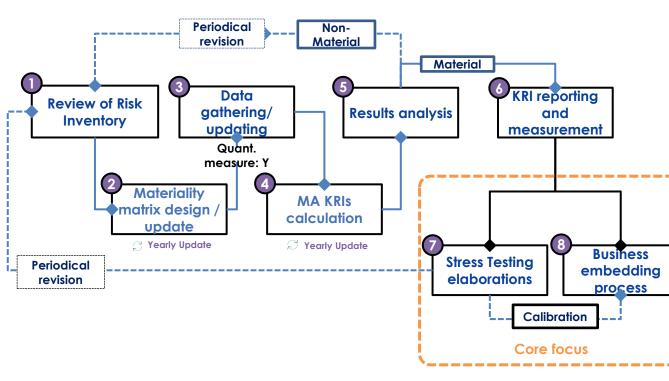
Daily risk manager tasks: link between NZ strategies with RAF, Credit Strategies and Underwriting process

	Risk Appetite Framework	Credit Strategies	Underwriting
ESG evolution of Credit Framework	2022: Introduction of specific limits on high ESG/Climate risk sectors within RAF	Full use of ESG Sectoral Strategy in the sectoral attractiveness of the Credit Strategies	 Inclusion of ESG/Climate considerations in the reinforced underwriting process for high ESG/Climate transactions for larger transactions
Target Setting	 2022: Introduction of RAF exposure limits on Oil & Gas and full phase-out from Coal mining in 2025 2023: Introduction of specific limits related to counterparties CO2 emissions 		 Requirement of Transition plan assessment for large exposure deals of clients operating in Net Zero sectors Pilot phase on Oil & Gas is ongoing, further developments on additional sectors expected in coming months
Green Asset Ratio – EU Taxonomy / ESG Reporting	2023: Full implementation of reporting on RRE taken as collateral, broken down by EPC certifications and by geomorphological characteristics, consequently taking into account both transition and physical risks	 Definition of a new additional incentive framework to include also counterparty/deal alignment percentage to EU Taxonomy requirements 	INTESA 🕅 SAN


Materiality Assessment Framework: Main applications in Intesa Sanpaolo

Area	Frequency	Scope of application							
Risk Management	"Periodic" application of the framework on the stock of exposures	 Definition and update of the Risk Inventory Identification of portfolio clusters for which to measure impacts in terms of ECL / Capital Adequacy (e.g., ICAAP, Recovery Plan,) RAF & monitoring: use of C&E KRIs for monitoring purposes in the RAF 							
	Û.Ţ	Sharing metrics/							
Business Embedding Process	"Continuous" application ¹ on flows of new credit underwriting process	 Identification of risk level and consequences on credit underwriting process: Pricing / delegation authorities of disbursement Haircut on value of collateral to be included in LTV assessment Explicit request for insurance coverage Support in NZBA strategy application 							

(1) Leveraging the gathered information to enable classification of products according to EU Taxonomy (e.g., for GAR / BTAR calculation)



Materiality Assessment Framework: Process overview

Materiality Assessment Framework: Use of quantitative features for periodical due diligence

Bottom-up quantitative analysis will support the yearly process of Materiality Assessment impacting measurement, monitoring and reporting

- 1) Updating Risk Inventory through regulatory / literature review
- 2) Periodical revisioning of relationships between risk factors and transmission channels with Banks business model
- 3) For each combination, **collecting input and scenario data**
- 4) Calculation of MA KRIs leveraging on bottom-up engines
- 5) Result analysis
- 6) If impacts are deemed relevant, for this risk-driver combination KRI are reported and measurement starts
- 7) Undertake, for the material part of the portfolio, stress test analyses and cascading on credit risk parameters
- 8) Enhancement of **business process embedding** mechanism leveraging the stress test results for calibration purpose

INTESA M SNDAOLO

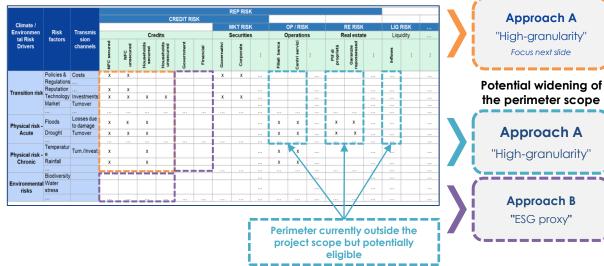
Materiality Assessment Matrix: Mapping all C&E risk drivers on Bank's business model

MYTERALTY ADECUENT RADEC SUBJECT RADEC SUBJEC SUBJE

The Materiality Matrix relies on a holistic assessment of all the potential impacts of C&E Risks on Banks business model

	Risk factors	Transmiss		REP RISK																
Climate / Environment						С	REDIT R	ISK												
								MKT RISK			OP / RISK			RE RISK		LIQ RISK				
al Risk		ion	Credits						Securities		Operations			Real estate			Liquidity			
Drivers		channels	NFC secured	NFC unsecured	Households secured	House holds unsecured	Government	Financial	Governativi	Corporate	I	Filiali banca	Centri servizi	÷	Ptf di proprietà	Garanzie repossessed	I	Inflows	I	÷
	Policies &	Costs	х	x					х	x										
	Regulations							Faraal	a a un la tu											
Transition risk	Reputation		х	х					or each combination of: npacted risk / Portfolio, Risk Factor and											
THATSTLIOTTISK	Technology	Investments	х	х	х						·									
	Market	Turnover		<u> </u>																
				ii				Transmission Channel, a bottom-up materiality evaluation will be carried for Risk Management												
Physical risk -	Floods	Losses due to damage	х	x	x					d	x	x		x	x					
Acute	Drought	Turnover	х	х	х						x	х		x	x			1.1	12	
								purposes and for Business			· ·									
Physical risk -	Temperatur e	Turn./Invest.	x		x			Embedding Process			x	x				· · · · ·	stig			
Chronic	Rainfall		× ·					С	calibration			x	х							
				Fo	cus															
Environmental	Biodiversity																			
	Water stress																			

INTESA m SANPAOLO


Materiality Assessment C&E KRIs: Possible future evolutions and approaches

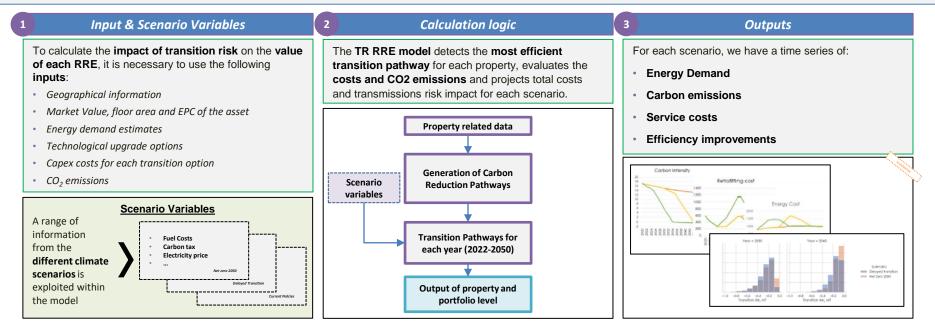
MUTERALTY MATERIALTY MATERIALTY PROCESS

9

After the Identification of each relevant intersection within the Materiality Matrix two alternative approaches can be applied:

- Approach A: leveraging on the outputs of high-granularity measurement engines (e.g. Transition & Physical Risk Engines). Output
 can be used also as drivers for materiality assessment of other risks (e.g., Op. Risk, Liquidity risk, ...)
- Approach B: sectoral / geographical proxies on which exposures will be classified in order to assess materiality

Project scope


- The bottom-up measurement engines allow to assess with a scenario-based approach both the single risk driver / transmission channel and the overall exposure to a risk area (e.g. Transition Risk) at counterparty / asset level
- For some risks (e.g., Operational Risk, ...) it is possible to use bottom-up engines to assess the materiality of some specific transmission channels (e.g., Use physical risk engines also to assess potential depreciation on branches)
- Where bottom-up measures are not available exposure / business volumes will be clustered at sectoral / geographical level (e.g. EAD prone to biodiversity risk)

INTESA M SANPAOLO

Materiality Assessment Framework: Transition Risk data & methodology

Transition risk is the risk factor associated with the adjustment process toward a low-carbon economy to meet the goals of the Paris

Climate Agreement. This can directly result to a depreciation of a wide range of assets or reduced productivity.

INTESA m SANPAOLO

Materiality Assessment Framework: Transition Risk on Mortgages "Granular heat-map solution"

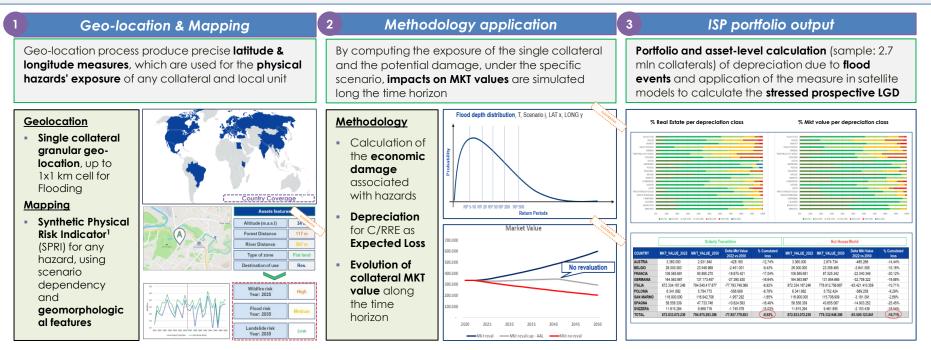
In order to comply with the expectations of the Regulator on mortgages, it is reasonable to imagine the creation of Granular heat-map (ZIP code, EPC, Heating systems level) that exploits the results of bottom-up processing as of 31.12.2022 on the bank's stock performed with a transition engine as part of ICAAP processes

Granular Heat-map solution

- Analysis dimensions: fixed geographical grid approach (ZIP Code) with breakdown by EPC and heating system
- Measure: Average % depreciation from transition risk event estimated on the stock
- Scenario: Orderly transition
- Methodology Time horizon: average residual maturity of the portfolio (13 years)

Average haircut \rightarrow impact on LTV (the same for each analysis dimensions)

Granular Heat-map illustrative application TORINO **ZIP Code 10121 (TO)** Sample number: 2.896 Sample number: 845 Average zip code level Depreciation: 3,2% Average zip code level Depreciation: 2.5% Given the high dispersion of the sample The depreciation was at the municipal level, it calculated considering was decided to some key features such proceed with **ZIP code** as the level of EPC and level maps the heating system Heating System EPC Level Depreciation % Zip Code Heating System EPC Level Depreciation % 4.5% Torino 10121 Electric resistive l ow risk level iah risk level 1,0% 3,0% dium risk leve erv-Hiah risk level


APE & Heating system

INTESA M SANPAOLO

Materiality Assessment Framework: Physical Risk data & methodology

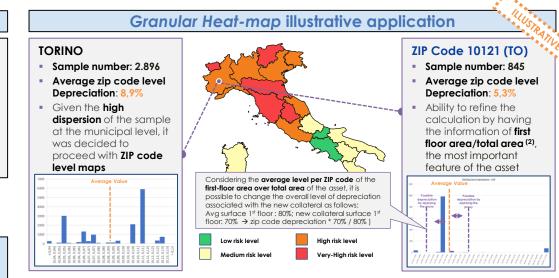
Physical risk refers to the financial impact of a changing climate, including more frequent extreme weather events and gradual changes in

climate. This can directly result in damage to property or reduced productivity, or indirectly lead to the disruption of supply chains.

(1) Synthetic measure of physical risk indicating the level of risk according to four categories (LOW, MEDIUM, HIGH, VERY HIGH) available for each hazard in perimeter

INTESA m SANPAOLO

Materiality Assessment Framework: Physical Risk on Mortgages "Granular heat-map solution"


In order to comply with the expectations of the Regulator on mortgages, it is reasonable to imagine the creation of fixed-grid maps (ZIP code level) that exploit the results of bottom-up processing as of 31.12.2022 on the bank's stock performed with the physical risk engine as part of ICAAP processes

Granular Heat-map solution

- Analysis dimensions: fixed geographical grid approach (ZIP Code level)
- Measure: Average % depreciation from physical risk event estimated on the stock
- Hazards: Flood Risk at 31/12/2022¹
- Methodology Time horizon: average residual maturity of the portfolio (13 years)

How to & Results

Average haircut by Zip Code → impact on LTV (the same for each zip code)

Using open ZIP Code heatmaps reduces dispersion and increases estimation accuracy

- (1) Damage functions are available also for other hazards but not elaborated on 31.12.2022 TBD inclusion of other hazards
- (2) Considering the average level per ZIP code of the first-floor area compared to the total area of the asset, it is possible to change the overall level of depreciation associated with the new collateral (e.g., Avg surface 1st floor: 80%, new collateral surface first floor: 70% → zip code depreciation * 70% / 80%)

Materiality Assessment Framework: Potential evolution in High granularity assessment for origination process

Ø ^{\$\$}	materiality assessme	nap solution has the limit to be an approximation when assess the Climate Risk materiality of new business. Also, the ent of the <i>Granular Heat-map</i> solution are based on the stock portfolio with fixed geographical grid. Fitch to on-line Climate Engines, presents advantages:
t C	Analysis granularity	 Complete bottom-up approach, using specific features of the assets (surface, floor,) and using the specific geographic cells to which they belong (distance to river, distance to forest,) Consistency between the approach in use for stock portfolio and new business
Target approach strengths	Evolution	 Potential usage of future evolution of Climate Engines, including insurance and adaptation measures ()
2 2 2	Synergies	 Synergies with EU-Taxonomy and other functions usage⁽¹⁾ Complete coherence with Regulator Expectations
		Technological requirement
	System tegration	 Need for system integration of Climate Engines by leveraging an API call to make the service available

ANY QUESTION?

fabio.verachi@intesasanpaolo.com

Thanks for your attention!

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policies or position of Intesa Sanpaolo Group

